

Automated Event Extraction and Named Entity Recognition in the Domain of Veterinary Medicine

Svitlana Volkova, PhD Student, Johns Hopkins University

MOTIVATION

Global epidemic surveillance is an essential task for national biosecurity management and bioterrorism prevention.

Animal Infectious Disease Outbreaks

influence on international travel and trade

cause economic crises, political instability

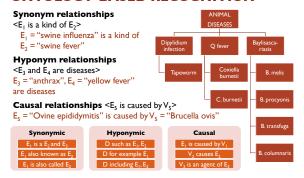
can cause loss of human life (61% of animal disease)

The goal is to protect the public from major health threads by developing the **framework for epidemiological analytics** that allows automated data collection, sharing, management, modeling and analysis in the domain of emerging infectious diseases.

DATA

PROBLEM FORMULATION

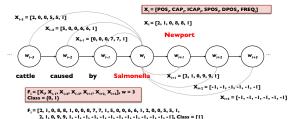
- Introduce the following functionality to the framework for epidemiological analytics:
- Domain-specific and domain-independent named entity recognition: ontology-based and using syntactic features:
 - √ disease names (e.g. "foot and mouth disease");
- √viruses (e.g. "picornavirus") and serotypes (e.g. "Asia-I");
- ✓ species (e.g. "sheep", "cattle");
- ✓locations (e.g. "United Kingdom", "eastern provinces of Shandong and Jiangsu, China" different level of granularity);
- √ dates in different formats including special cases (e.g. "last Tuesday", "two month ago").
- Automated animal disease event extraction and classification from unstructured web data.

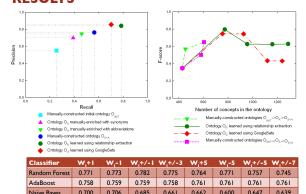

RESEARCH OUESTIONS

How do we construct an ontology of animal disease names, their synonyms and corresponding viruses and learn semantic relationships between them?

How should we resolve location disambiguation "Rabies in Isle of Wight", geo-tag in Virginia, USA or UK?

How should we merge extracted entities into corresponding event tuples? How do we classify extracted event tuples in order to reason about event confidence?


ONTOLOGY-BASED RECOGNITION


APPLYING SYNTACTIC FEATURES

"Severe disease in dairy cattle caused by Salmonella Newport"

POS = [NNP, IN, NNS, VBN, ...] = [2, 0, 2, 5, ...]

RESULTS

Acknowledgements: William H. Hsu, Doina Caragea, Chris Callison-Burch

EVENT EXTRACTION

Type I: Emergent Outbreak-Related Events

"On 2 Jun 2010, a total of 35 individuals infected with a matching strain of salmonella"

Type 2: Non-Emergent Outbreak-Related Events

*The US saw its latest FMD outbreak in Montebello, California in 1929"

Type 3: Disease Outbreak Non-Related Events

"A meeting on foot and mouth disease was held in Brussels on Oct 17, 2007"

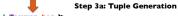
Types 4 & 5: Hypothetical Events or Negation of the Events

EVENT TUPLE

Event, =< disease; date; location; species; status >

Class I – Susceptible Status								
healthi	popul	open	vulner	expos	respons	sign	separ	contamin
Class 2 – Infected Status								
outbreak	infect	report	confirm	affect		diagnos	readi	inciner
Class 3 – Recovered Status								
destroi		erad	dispos	dead		slaughter	elimin	cull

Step I: Entity Recognition


Foot-and-mouth disease_[DIS] on hog_[SP] farm in Taoyuan_[LOC]

Taiwan's TVBs television station reports that agricultural authorities confirmed **foot-and-mouth disease**_[Dis] on a **hog**_[se] farm in Taoyuan,_[Loc], On 9 Jun 2009,_[Dr], the farm's owner reported symptoms of **FMD**_[Dis], in more than 30 hog_[se], Subsequent testing confirmed **FMD**_[Dis], Agricultural authorities asked the farmer to strengthen immunization. The outbreak has not affected other farms. Authorities stipulated that the affected **hog**_[se] farm may not sell pork for 2 weeks.

Step 2: Sentence Classification

- I. Foot-and-mouth disease_[DIS] on hog_[SP] farm in Taoyuan_[LOC].
- 2. Taiwan's TVBS television station <u>reports</u> that agricultural authorities <u>confirmed</u> <u>foot-and-mouth disease_[DIS]</u> on a <u>hog_[SP]</u> farm in <u>Taoyuan_[LOC]</u>.
- 3. On 9 Jun 2009_[DT], the farm's owner <u>reported</u> symptoms of FMD_[DIS] in more than 30 hogs_[SP].
- 4. Subsequent testing confirmed FMD_[DIS].
- = 5. Agricultural authorities asked the farmer to strengthen immunization
- 6. The outbreak has not affected other farms
- 7. Authorities stipulated that the affected hog[SP] farm may not sell pork for 2 weeks.

E₁ = <Foot-and-mouth disease, ?, Taoyuan, hog, ?>
E₂ = <Foot-and-mouth disease, ?, Taoyuan, hog, confirmed>

E₃ = <FMD, 9 Jun 2009, ?, hog, reported>

E₄ = <**FMD**, ?, ?, ?, confirmed>

Step 3b: Tuple Aggregation

E = <disease, date, location, species, status> =

<Foot-and-mouth disease, 9 Jun 2009, Taoyuan, hog, infected>

EVENT VISUALIZATION

2001 foot-and-mouth disease outbreak over time in United Kingdom: February, March, April